

Developing a clinically important class of glycan-targeted biologics with unprecedented tumor specificity

Funding First Human Data

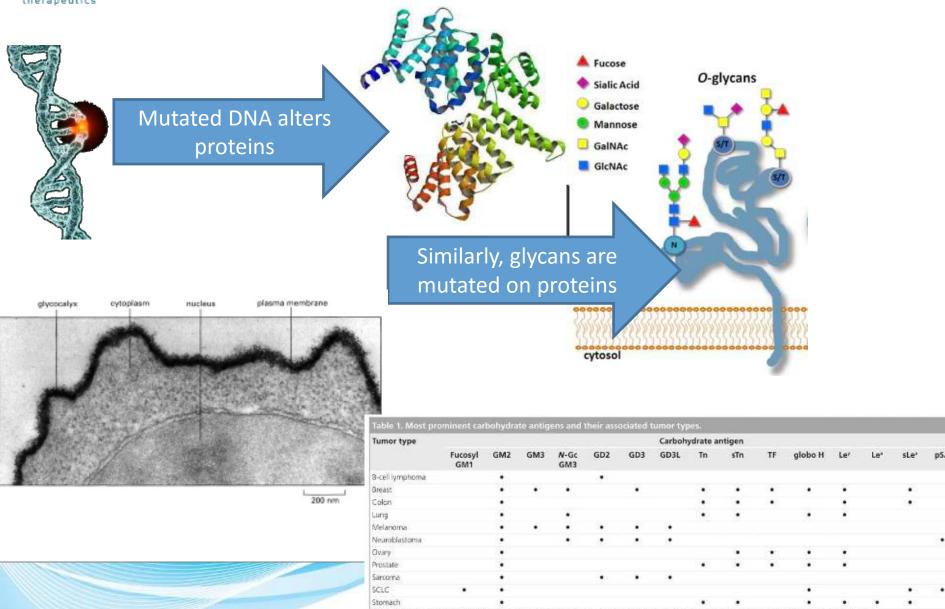
May 2018

Siamab platform unlocks exciting but historically challenging target space

- Glycans: cancer specific & immunosuppressive/chemoresistant
- Initiated <u>discovery collaboration w/ Boehringer Ingelheim</u> using Siamab's platform in 2017

Lead ST1-ADC program moving rapidly to clinical trials in ovarian cancer

- <u>Compelling efficacy</u> in multiple xenograft & PDX models
- Favorable safety profile in <u>pilot cyno tox</u> study

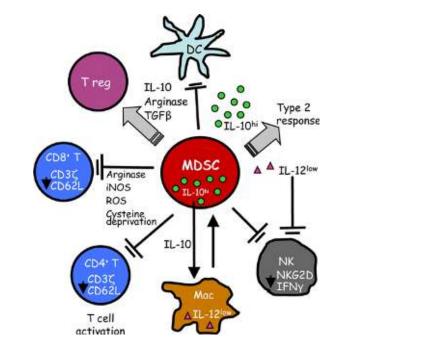

Raising \$15-20m B-round to fund through clinical proof of concept

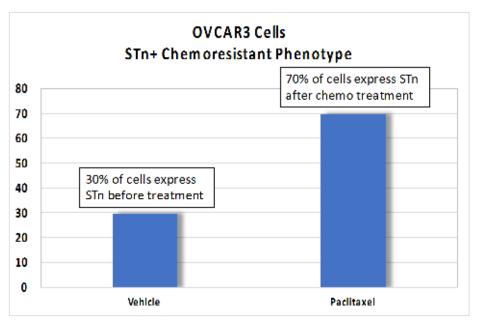
- Raised \$14m A round from Novartis, Momenta, family offices to date
- \$3m+ in grants won to date

Seeking lead institutional investor

- Alternative funding history – highly capital efficient but challenging to transition

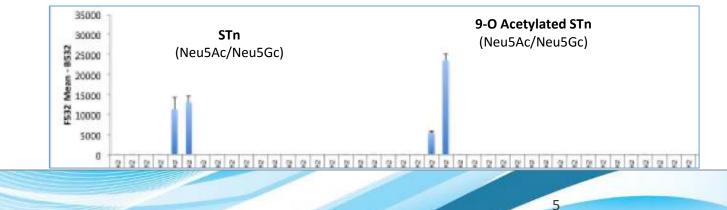
Cancers Consistently Alter Glycosylation Multiple TACA Targets: Tumor Associated Carbohydrate Antigens

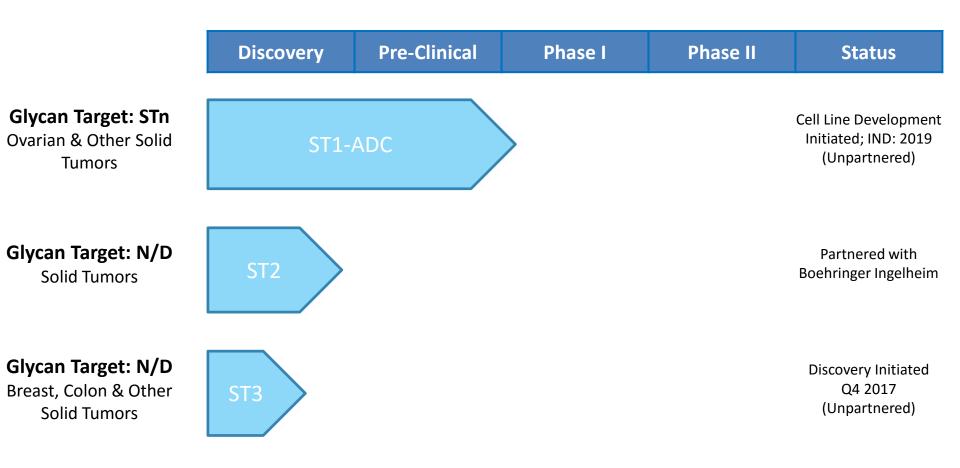



Ler, Gené A, Ler, Javes X, Ler, Levels Y, N-Gr, H-ghyroly, p.S. Polynaki acid. SCLC. Small-cell king cancer, vito: Saly! Tromsen-sociade, 1F. Thomsen-Frederiek, To: Thomsen insurede, Date from (32.4x 51.145.144.313-315)

TACAs Promote an Aggressive, Immunosuppressive Phenotype Attractive but Challenging Targets

- Suppress innate immunity (MDSCs and NK cells)
- Confer chemoresistance and a cancer stem-cell phenotype
- Enable tissue invasion & metastases




- Target is the glycan itself not the glycoprotein
 - Binds multiple glycoproteins
- Glycan-binding mAbs rare to find with high affinity and specificity
 - Multiple format potential ADC, TCR/bispecific, CAR-T
- Siamab's platform solves this problem
 - Validated with lead program and Boehringer Ingelheim collaboration
- Pharma needs new targets!

Siamab Pipeline

Jeff Behrens, MBA, MS, President & CEO

- Biogen Idec Incubator: co-founder, led 3 deals
- Alnylam, led alliance with Takeda pharmaceuticals
- Edimer, Third Rock Ventures

Dan Dransfield, PhD, SVP R&D

- Dyax, ArQule, Tokai
- Tufts, Yale, Medical College of Georgia

Gregg Beloff, JD, MBA, CFO

- Cerulean Pharma, Immunogen, Archemix

Rebecca Dabora, PhD, Consulting Head of CMC

- Biogen, Altus, Merck

William Slichenmyer, MD, Consulting CMO

- Pfizer, Merrimack, Aveo

Siamab Board & Key Advisors

Board of Directors

- Jeff Behrens President & CEO
- Brad Curley Boston Harbor Angels (Chair)
- Adam Feire Novartis
- Ganesh Kaundinya Momenta Pharma
- Peter Kroon Exan Capital
- Gary Pforzheimer PG Calc
- Todd Zion SmartCells

Glycobiology Advisors

- Ajit Varki, MD, PhD (Founder) UCSD
- Joy Burchell, PhD Kings College London
- **Zach Shriver, PhD** VP Research, Visterra

Oncology Advisors

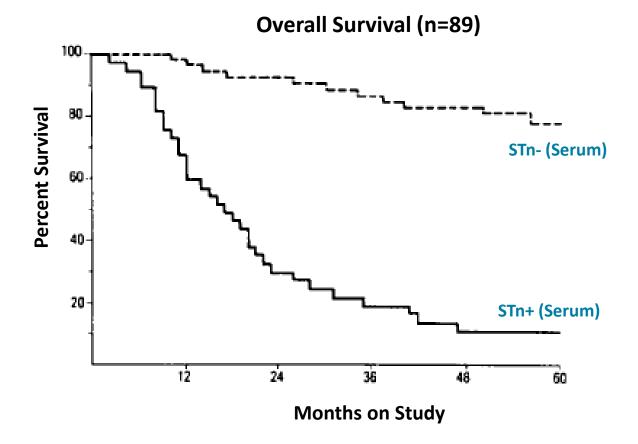
- Ron Drapkin, MD, PhD UPenn
- Bo Rueda, PhD Mass General Hospital

Lead Program Development & Company Building

- Morris Rosenburg, PhD former EVP, Seattle Genetics
- Peter Kiener, PhD CSO, Sucampo Pharmaceuticals
- Haifeng Bao, PhD Preclinical Consultant, former MedImmune

8

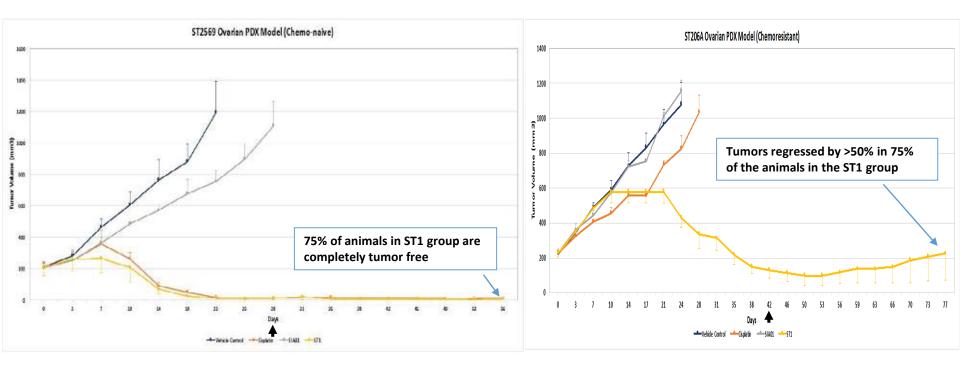
 John Edwards – Genzyme, Genetics Institute, TKT, Adnexus, F-Star



Siamab's Lead ST1 Program (SIA01-ADC) IND-ready for FIM in 2019; Initiated Backup TCE Program

- Platform discovered multiple mAbs against top priority target: STn
- MGH collaboration ongoing \rightarrow chemoresistant/CSC phenotype
- Humanized leads conjugated to vc-MMAE \rightarrow ADC format
 - Excellent therapeutic window for ADC approach
- Compelling xenograft & PDX efficacy data
- IHC and tissue cross reactivity (TCR) studies completed
- Pilot cyno tox study \rightarrow excellent safety profile

STn Target Opportunity Serum STn+ Associated with Poor Prognosis



- Quantified STn expression on primary patient tumor samples <u>and</u> MDSCs
 - Fresh samples analyzed by flow cytometry
 - Both tumor cells and tumor infiltrating MDSCs express STn in patient samples
- STn+ MDSCs linked to STn+ tumors in MDA-MB-231 STn+/- model
- ST1 ADC depletes STn+ MDSCs in OVCAR3 mouse xenografts

ST1-ADC Lead Program Results Dramatic PDX Efficacy in Ovarian Cancer PDX Models

Cisplatin 3mg/kg, q7dx3 SIA01/ST1 5mg/kg (IV), QW (arrow indicates when treatment ended) # of animals/group = 3-5

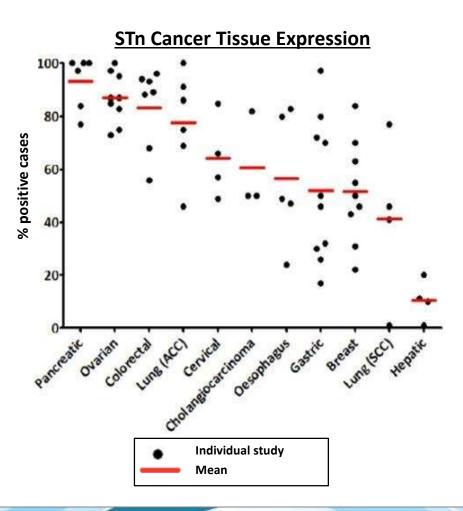
ST1 Lead Program Results

Pilot Cyno PK/Tox Study Demonstrates Safety & Therapeutic Window

- 2 doses ST1-ADC administered: Days 1, 22 @ 1, 3, 6mg/kg
 - Designed based on MMAE history/Adcetris[®] preclinical package
- Results demonstrate excellent safety profile of ST1
 - No deaths, no body weight loss (animals maintained weights between 2.20-2.47 kgs)
 - No gross pathologic changes across all organs assessed
 - Histopathologic changes limited to the bone marrow (MMAE class effect)
 - All clinical chemistry results (e.g., LFT's (ALT/AST/ALP), kidney function (CREAT)) normal throughout study
- Half-life ~4 days; exposure data in-line with published findings for other MMAE ADCs
- Derisked IND-enabling GLP tox → solid therapeutic window

	mg/kg allometric scaling			
	Mouse	Cyno	Human	
	1.00	0.21	0.07	
	2.50	0.52	0.19	Efficacy (mouse)
	5.00	1.03	0.37	Strong efficacy (mouse)
	14.56	3.00	1.09	
	29.13	6.00	2.17	Tox signs (low/cyno)
	38.83	8.00	2.90	MTD? (not tested yet)
1	* Shaded boxes = in vivo data			

- Cell line development complete in early Q2 2018
- Next steps
 - Select CMO and initiate GMP scaleup
 - IND-enabling GLP tox studies designed
 - Pre-IND meeting w/FDA in Q3 2018
- Phase I/Ib studies design in place
 - Standard 3x3 study with single patient cohorts at lowest doses
 - Expansion cohorts for phase Ib
 - Ovarian
 - Confirmed STn+ tumors
 - Possible 3rd cohort: pancreatic or gastric
 - STn expression to be assessed in serum and by IHC when samples available



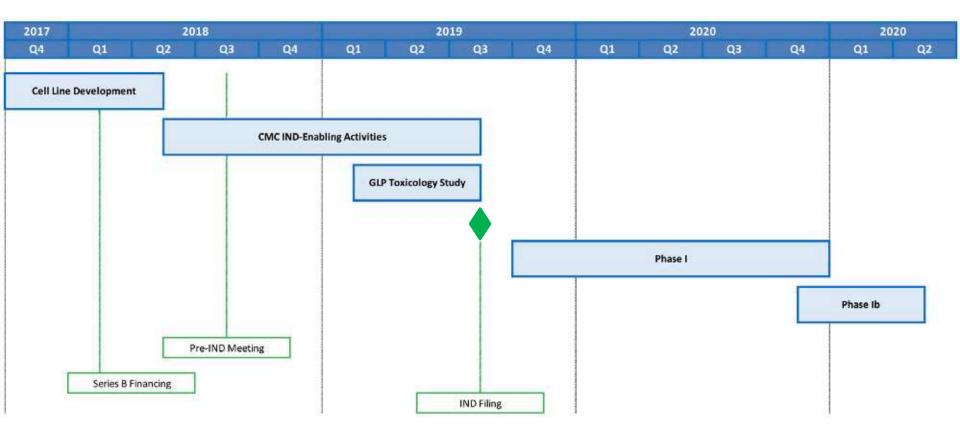
Ovarian cancer – Potential first indication

- High unmet medical need
- Chemoresistant recurrence common
- 5 year survival rate: 30%
- US incidence: 22,500 cases diagnosed/yr
- Peak sales potential approaches \$1b/yr

Other key indications

- Pancreatic
- Gastric (diffuse subtype)
- Prostate (>80% expression)

Advance lead program to clinical proof-of-concept (phase lb)


- 3 years
- \$17M program-specific costs: CMC, GLP tox, PhI/Ib studies
 - Australia strategy could reduce this by ~\$5m (tax rebate)
- G&A \$3M
- Advance pipeline
 - − 1-2 lead candidate programs \rightarrow \$5M pipeline costs

Complete second pharma deal

- >\$10M free cash flow (2018-2020)
- Incremental to raise and budget

Lead ST1 Program Development Timeline

